

Estd. 1962 NAAC 'A' Grade

SHIVAJI UNIVERISTY, KOLHAPUR-416 004. MAHARASHTRA

PHONE : EPABX-2609000 **website- www.unishivaji.ac.in** FAX 0091-0231-2691533 & 0091-0231-2692333 – BOS - 2609094

शिवाजी विद्यापीठ, कोल्हापूर – 416004.

दुरध्वनी (ईपीएबीएक्स) २६०९००० (अभ्यास मंडळे विभाग— २६०९०९४) फॅक्स : ००९१-०२३१-२६९१५३३ व २६९२३३३.e-mail:bos@unishivaji.ac.in

SU/BOS/Science/8644

Date: 20/08/2019

To,

The Principal, College of Non-Conventional Vocational Courses for Woman, SIBER,Kolhapur.

Subject: Regarding syllabi and Structure of B.Sc. Part- I Environmental Science (Entire) CBCS (Sem.I & II) degree programme under the Faculty of Science and Technology

Sir/Madam,

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the revised syllabi, Structure, Subject list, Nature of question paper of B.Sc. Part- I Environmental Science (Entire) under the Faculty of Science and Technology.

This syllabi, Structure, Subject list, Nature of question paper shall be implemented from the academic year 2019-2020 (i.e. from June 2019) onwards. A soft copy containing the syllabus is attached herewith and it is also available on university website www.unishivaji.ac.in (Online Syllabus)

You are, therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

Yours faithfully,

Dy Registrar

Copy to:

1	The Dean, Faculty of Science & Technology	7	Appointment Section
2.	Director, Board of Examinations and Evaluation	8	P.G.Seminar Section
3	The Chairman, Respective Board of Studies	9	Computer Centre/IT Cell
4	B.Sc. Exam	10	Affiliation Section (P.G./U.G.)
5	Eligibility Section	11	Affiliation Section (T-II)
6	O.E. I Section	12	P.G.Admission Section

SHIVAJI UNIVERSITY, KOLHAPUR.

Accredited By NAAC with 'A' Grade CHOICE BASED CREDIT SYSTEM

Syllabus For

B.Sc. Part - I

Environment Science (Entire)

SEMESTER I AND II

(Syllabus to be implemented from June, 2019 onwards)

B.Sc. Part - I

Environment Science (Entire)

SEMESTER I AND II

(Syllabus to be implemented from June, 2019 onwards.)

- ❖ Guidelines shall be as per B. Sc. Regular Programme
- ❖ Rules and Regulations shall be as per B.Sc. Regular Programme except CBCS R.B.Sc.3 Structure of Programme and List of Courses.

* Preamble:

This syllabus is framed to give sound knowledge with understanding of Environment science to undergraduate students of

B.Sc. Environment Science (Entire) Programme. Students will learn Environment Science as a separate course (subject) from B. Sc. I.

The goal of the syllabus is to make the study of Environment Science popular, interesting and encouraging students for higher studies including research.

Programme Outcome:

- 1. This programme will lay strong foundation of environmental concepts for posts graduate education and research.
- 2. Helps students in capacity building, developing environmental programmes /projects based on sound technical, environmental and policy matters of Government of India.
- 3. Develop ability to carry out experiments and provide efficient conclusions.
- 4. Develop an approach to work for needs of society regarding environment, health, safety considerations.

Programme Specific Outcome:

- 1. This programme will make students to understand the concept of sustainable development.
- 2. This programme will provide in-depth knowledge to the students in respect of current environmental and safety problems faced by human society and to develop amongst students' scientific attitude based on interdisciplinary approach to enable them to take holistic view in decision taking.

Structure of Program and List of Courses are as follows:

Structure of B. Sc. Environment Science (Entire) Programme Semester I & II <u>Structure–I</u>

	SEMESTER – I (Durat										onths)					
			-	ГЕАСН	INC	S SCHE	ME				E	XAMI	NATIO	N SCHEM	E	
Sr.	ct	THEORY				PF	RACTIC	AL			THE	CORY		PRACTICAL		
No.	Course (Subject) Title	Credits	No. of	Hours		Credits	No. of lectures	Hours		Hours	Max	Total Marks	Min	Hours	Max	Min
1 2	DSC-A1 DSC-A2	2 2	5	4		2	4	3.2		2	50 50	100	35			
3	DSC-A3 DSC-A4	2 2	5	4		2	4	3.2		2 2	50 50	100	35		CTICA	
5	DSC-A5 DSC-A6	2 2	5	4		2	4	3.2		2 2	50 50	100	35	EXAM IS A	INATI(NNUAI	
7 8	DSC-A7 DSC-A8	2 2	5	4		2	4	3.2		2 2	50 50	100	35			
9	AECC-A	2	4	3.2						2	50	50	18			
	Total	18	24	19.2		8	16	12.8			-	450				
				SEM	ΙE	STE	R - II (Duratio	on	- 6 M	[onths])				
2	DSC-B1 DSC-B2	2 2	5	4		2	4	3.2		2	50 50	100	35		50	18
3	DSC-B3 DSC-B4	2 2	5	4		2	4	3.2		2 2	50 50	100	35	As per BOS	50	18
5	DSC-B5 DSC-B6	2 2	5	4		2	4	3.2		2	50 50	100	35	Guide- lines	50	18
7 8	DSC-B7 DSC-B8	2 2	5	4		2	4	3.2		2 2	50 50	100	35		50	18
9	AECC-B	2	4	3.2						2	50	50	18			
	Total	18	24	19.2		8	16	12.8			-	450			200	
G	Frand Total	36	48	38.4		16	32	25.6				900				

- Student contact hours per week: 32 Hours (Min.)
- Total Marks for B.Sc.-I (Including English): 1100
- Theory and Practical Lectures : 48 Minutes Each
- Total Credits for B.Sc.-I (Semester I & II): 52
- **DSC** Discipline Specific Core course: All papers are compulsory.
- AECC Ability Enhancement Compulsory Course (A & B)- English
- Practical Examination will be conducted annually for 50 Marks per course (subject).
- There shall be separate passing for theory and practical courses.
- (A) Non-Credit Self Study Course : Compulsory Civic Courses (CCC)

For Sem I: CCC - I: Democracy, Elections and Good Governance

(B) Non-Credit Self Study Course : Skill Development Courses (SDC)

For Sem II: SDC – I: Any one from following (i) to (v)

i) Business Communication & Presentation ii) Event management iii) Personality Development, iv) Yoga & Physical Management v) Resume, Report & proposal writing

Structure of B. Sc. Environment Science (Entire) Programme Sem III & IV <u>Structure - II</u>

	SEMESTER-III (Dur								ion	-6 N	Month	s)				
			T	EACHI	NG	NG SCHEME					E	XAMI	NATIO	ON SCHEN	IE	
Sr.	se ct)	Т	HEOR	Y		PI	RACTIC	AL			THE	ORY		PRA	CTICA	L
No.	Course (Subject) Title	Credits	No. of	Hours		Credits	No. of lectures	Hours		Hours	Max	Total Marks	Min	Hours	Max	Min
1	DSC-C1	2	3	2.4		4	8	6.4		2	50	100	35			
2	DSC-C2	2	3	2.4				0.1		2	50	100	35			
3	DSC-C3	2	3	2.4		4	8	6.4		2	50	100	35	PRA	CTICA	L
4	DSC-C4	2	3	2.4			0	0.4		2	50	100	33		IINATI	
5	DSC-C5	2	3	2.4		4	8	6.4		2	50	100	35	IS A	NNUA	L
6	DSC-C6	2	3	2.4		7	0	0.4		2	50	100	33			
7	AECC-C	4	4	3.2												
	TOTAL	16	22	17.6		12	24	19.2				300				
				S E M	\mathbf{E}	STE	R – IV	(Durati	ion	-6 N	Month	s)				
1	DSC-D1	2	3	2.4		4	8	6.4		2	50	100	35		100	35
2	DSC-D2	2	3	2.4			O	0.4		2	50	100	33	As per	100	
3	DSC-D3	2	3	2.4		4	8	6.4		2	50	100	35	BOS	100	35
4	DSC-D4	2	3	2.4		4	0	0.4		2	50	100	33	Guide-	100	33
5	DSC-D5	2	3	2.4		4	8	6.4		2	50	100	35	lines	100	35
6	DSC-D6	2	3	2.4		4	0	0.4		2	50	100	33		100	33
7	AECC- C									3	70	100	25			
	AECC- D									٥	30	100	10			
	TOTAL	12	18	14.4		12	24	19.2				400				
	1011111	28	40	32		24	48	38.4				700			300	
								1								

- Student contact hours per week : 32 Hours (Min.)
- Total Marks for B.Sc.-II (Including EVS) : 1000
- Theory and Practical Lectures : 48 Minutes Each
- Total Credits for B.Sc.-II (Semester III & IV): 52
- **DSC**: Discipline Specific Core Course: All papers are compulsory.
- **AECC** Ability Enhancement Compulsory Course (C) :

Environmental Studies: EVS (Theory – 70 & Project – 30 Marks)

- Practical Examination will be conducted annually for 100 Marks per course (subject).
- There shall be separate passing for theory and practical courses also for Environmental Studies.

Structure of B. Sc. Environment science (Entire) Programme Sem V & VI <u>Structure – III</u>

	SEMESTER-V (Duration – 6 Months)															
		TEACHING SCHEME				ME				EXAMINATION SCHEME						
Sr.	4		THEO	RY		PR	ACTIC	AL				THEORY PRACTICAL			L	
No.	Subject Title	Credits	No. of lectures	Hours		Credits	No. of lectures	Hours		Hours	Theory	Internal	Min Marks	Hours	Max Marks	Min Marks
1	DSE-E1	2	3	2.4		2	5	4		2	40	10	14+4=18			
2	DSE-E2	2	3	2.4		2	5	4		2	40	10	14+4=18	DD 4	OTT O A	_
3	DSE-E3	2	3	2.4		2	5	4		2	40	10	14+4=18		CTICA: IINATI	
4	DSE-E4	2	3	2.4		2	5	4		2	40	10	14+4=18		.NNUAI	
5	AECC-E	2	4	3.2						2	40	10	14+4=18		11110111	
	TOTAL	10	16	12.8		8	20	16			200	50				
				SI	E N	1ES	ΓER	– VI ((Dı	uratio	on – 6 N	Ionths)				
1	DSE-F1	2	3	2.4		2	5	4		2	40	10	14+4=18	As per	50	18
2	DSE-F2	2	3	2.4		2	5	4		2	40	10	14+4=18	BOS	50	18
3	DSE-F3	2	3	2.4		2	5	4		2	40	10	14+4=18	Guideline	50	18
4	DSE-F4	2	3	2.4		2	5	4		2	40	10	14+4=18	s	50	18
5	AECC-F	2	4	3.2						2	40	10	14+4=18			
	TOTAL	10	16	12.8		8	20	16			200	50				
GR	AND TOTAL	20	32	25.6		16	40	32			400	100			200	
• S	• Student contact hours per week : 32 Hours (Min) • Total Marks for B.ScIII (Including English) : 700															
• T	heory and Prac	tical	Lectu	res : 4	18 I	Min. E	ach	•		Total Credits for B.ScIII (Semester V & VI) : 36						

- **DSE- Discipline Specific Elective :** All papers are compulsory.
- **AECC** Ability Enhancement Compulsory Course (E & F): English
- Practical Examination will be conducted annually for 200 Marks.
- There shall be separate passing for theory, internal and practical.
- (A) Non-Credit Self Study Course: Compulsory Civic Courses (CCC)

For Sem V: CCC – II: Constitution of India and Local Self Government

(B) Non-Credit Self Study Course : Skill Development Courses (SDC)

For Sem VI: SDC – II: Any one from following (vi) to (x)

vi) Interview & Personal Presentation Skill, vii) Entrepreneurship Development Skill, viii) Travel & Tourism, ix) E-Banking & Financial Services, x) RTI & Human Right Education (HRE), IPR & Patents

•

CBCS B. Sc.: Environment Science (Entire): List of courses:

i) B. Sc Environment Science: Part 1 (Sem I & II)

Course code	Name of Course	Course code	Name of Course
	Sem I		Sem II
DSC-A1	Ecology & Ecosystem	DSC-B1	Fundamental of Environmental Pollution
			-2 (air & noise)
DSC-A2	Natural Resources	DSC-B2	Biological Diversity and Conservation
DSC-A3	Fundamentals of	DSC-B3	Climate Change and Sustainable
	Geosciences		Development
DSC-A4	Fundamentals of Environmental pollution- 1[Water]	DSC-B4	Forest Management
DSC-A5	Fundamentals of environmental Science	DSC-B5	Solid and Hazardous Waste management
DSC-A6	Soil Science	DSC-B6	Occupational Health & Safety
DSC-A7	Fundamentals of	DSC-B7	Remote sensing & GIS
	Environmental Chemisrty		
DSC-A8	Fundamentals of	DSC-B8	Computer Applications
	Environmental Biology		
AECC – A	English – I	AECC – B	English – II

Practical

DSC-P1	Lab Course I (Based on DSC-A1, DSC-A2, DSC-A3, DSC-A4)	DSC-P3	Lab Course III (Based on DSC-B1, DSC-B2, DSC-B3, DSC-B4)
DSC-P2	Lab Course II (Based on DSC-A5, DSC-A6, DSC-A7, DSC-A8)	DSC-P4	Lab Course IV (Based on DSC-B5, DSC-B6, DSC-B7, DSC-B8)

DSC EVS: - Discipline Specific Core Course B.Sc. (Environment Science)

AECC: - Ability Enhancement Compulsory Course: Compulsory English

ii) B.Sc. Environment Science:Part 2 (Sem III & IV)

Course code	Name of Course	Course code	Name of Course			
	Sem III	Sem IV				
DSC-C1	Disaster Management-1	DSC-D1	Environmental Microbiology			
	(Natural)					
DSC-C2	Biostatistics	DSC-D2	Environmental Management			
			System &Audit			
DSC-C3	Environmental Ethics and	DSC-D3	Environmental Engineering -			
	Environmental Issues		2[waste water]			
DSC-C4	Environmental Engineering -	DSC-D4	Environmental Education &			
	1[water]		policy			
DSC-C5	Environmental impact	DSC-D5	Environmental Economics			
	Assessment					
DSC-C6	Environmental Biotechnology	DSC-D6	Disaster Management-II(Man			
			made)			
AECC – C	Environmental Studies	AECC – D	Environmental Studies			
	(Theory)		(Project)			

AECC-C: - Ability Enhancement Compulsory Course: Environmental Studies <u>Practical</u>

DSC-P5	Lab Course V (Based on DSC-C1, DSC-C2, DSC-C3)	DSC-P7	Lab Course VII (Based on DSC-D1, DSC-D2, DSC-D3)
DSC -P6	Lab Course VI (Based on DSC-C4, DSC-C5, DSC-C6)	DSC-P8	Lab Course VIII (Based on DSC-D4, DSC-D5, DSC-D6)

iii) B. Sc. Environment Science:Part 3 (Sem V & VI)

Course code	Course code Name of Course		Name of Course		
	Sem V	Sem VI			
DSE-E1	Land and water management	DSE-F1	Environmental Toxicology		
DSE-E2	Environmental Legislation	DSE-F2	Ecorestoration		
DSE-E3	Carbon Sequestration & Ecological Footprints	DSE-F3	Sustainable Agricultural Practices		
DSE-E4	Wildlife Management	DSE-F4	Ecotourism		
AECC – E	English – III	AECC – F	English – IV		

Practical

DSC-P9	Lab Course IX (Based on DSC-E1, DSC-E2)	DSC-P11	Lab Course XI (Based on DSC-F1, DSC- F2)
DSC -P10	Lab Course X (Based on DSC-E3, DSC-E4)	DSC-P12	Lab Course XII (Based on DSC-F3, DSC- F4)

Ecology and Ecosystem – Paper I (DSC-A1 – Ecology and Ecosystem

(DSC-A1 – Ecology and Ecosystem) Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Understand the basic concepts regarding ecology and ecosystem.
- 2. Get acqainted with biogeochemical cycles and succession.

Unit	Lecture Hours
Unit I	15
A: Ecology	
Definition, Scope and basic principles of ecology and environment.	
Biological levels of organization, population, community, ecosystem	
and biosphere.	
Climatic factors - Light, temperature, water and precipitation.	8
Population: Basic concepts, population characteristics – density,	
natality, mortality, immigration, emigration	
Age-structure, population growth.	
Ecological niche and habitat.	
B: Ecosystems	
Ecosystem: Basic concepts, components of ecosystem.	
Trophic levels, food chains and food webs.	
Ecological pyramids, ecosystem functions.	7
Energy flow in ecological systems, energy efficiencies	
Positive and negative interactions among populations – competition,	
predation, parasitism, mutualism.	
Unit II	15
A: Biogeochemical Cycles	
Biogeochemical Cycles: Importance, gaseous and sedimentary cycles.	
Carbon, Nitrogen, Phosphorus and Sulphur Cycles.	8
Global Oxygen Cycles.	
Hydrological cycles.	
B: Succession	
Succession: Concepts of succession, Types of Succession.	
Trends in succession.	_
Climax and stability.	7
Major biomes of the world.	
Characteristics of terrestrial fresh water and marine ecosystems.	
Forests, grasslands, lake, river and marine ecosystems of India.	

- 1. Muller-Dombols, D. and Ellenberg, H. (1974). Aims and Methods of Vegetation Ecology, Wiley, New York.
- 2. Odum, E.P. (1983), Basic Ecology, Sanders, Philadelphia.
- 3. Robert Ricklefs (2001). The Ecology of Nature. Fifth Edition. W.H. Freeman and Company.
- 4. Singh K.P. and J.S. Singh (1992). Tropical Ecosystems: Ecology and Management. Wiley Eastern Limited, Lucknow, India.
- 5. Singh, J.S. (ed.) 1993. Restoration of Degraded Land: Concepts and Strategies.Rastogi Publications, Meerut.
- 6. Smith, R.L. (1996). Ecology and Field Biology, Harper Collins, New York

Natural Resources – Paper II

(DSC-A2 – Natural Resources)

Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Introduction to the concept of natural resources and its classification.
- 2. Understanding natural resources of India.

Unit	Lecture Hours
Unit I	15
A: Classification of Natural Resources Definition, Concept of natural resources and classification of resources-Renewable and non-renewable resources,	
Advantages and disadvantages of Renewable and non-renewable resources. Energy use pattern in world. Energy scenario at national level and its impacts on environment	7
B: Natural Resources of India Natural resources of India with Reference to : occurrence, distribution and utilization with special reference to i)Land resources ii)Soil resources iii)Mineral resources Mineral Resources: Utilization of metallic minerals (Iron, Aluminum and Manganese) and non-metallic minerals (Mica, Asbestos, Common Salt).	8
Unit II	15
A:Forest and Wildlife Resources Forest and wildlife resources: Concepts, Forest resources: Forest vegetation, status and distribution of forest and wildlife resources, contribution as resource. forest cover and types, Major and minor forest products	7
B:Conventional and Non-conventional Resources Eenergy demand analysis Fundamental of Energy: Energy; work and power; different forms of energy. Conventional Energy Sources and Technology: Coal, petroleum; natural gas, nuclear energy, Non conventional resources; solar, water, wind, tidal, geothermal resources, biomass energy	8

- 1. Cubbage, Frederick, Jay O'Laughlin, and Nils Peterson. 2015 (in preparation). Natural Resource Policy. Waveland Press. Chapters available on-line at NC State University electronic reserves.
- 2. Chaudhuri AB and Sarkar DD (2003) Megadiversity Conservation, Flora, Fauna and Medicinal Plants of India's Hotspots. Daya Publishing House, New Delhi.
- 3. Environmental Resources by Mathur
- 4. Singh MP, Singh BS and Soma S. Dey (2004) Conservation of Biodiversity and Natural Resources. Daya Publishing House, New Delhi.
- 5. Singh, B. K. 2004: Biodiversity Conservation and Management, Mangaldeep Publications, Jaipur
- 6. Mital, K. M. 1997: Non-conventional Energy System, Wheeler Publishers, New Delhi

- 7. Singh, A. K. 1987: Forest Resources, Ecology and Environment, Concept Publishing Co., New Delhi
- 8. Sarma, P. K.: Forest Resources and their Utilization in India, Mittal Publishers, New Delhi
- 9. Agrawal, V. P.: Forestsin India, Oxford & IBH, New Delhi
- 10. Tyner, W.E.: Energy Resources and Economic Development in India, Allied Pub. Pvt. Ltd.
- 11. Mital, K.M. 1997: Non-conventional Energy System, Wheeler Publishers, New Delhi
- 12. Pachauri, R. K.: Energy, Environment and Development, Vol. I & II, HarAnand Pub. Pvt. Ltd

Fundamentals of Geoscience – Paper III (DSC-A3 – Fundamentals of Geoscience)

Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Understand origin of earth and different theories of evolution.
- 2. Awareness about various phenomenons taking place in atmosphere.

Unit	Lecture Hours
Unit I	15
A: Origin of Earth and Theories of Evolution Origin of Earth, Primary geochemical differentiation, Different types Rocks and Minerals, Control on formation of landforms-tectonic including plate tectonics and climatic Theories of Evolution- Wagener's Continental drift Theory, Plate tectonic Theory	8
B: Hydrosphere and Trace Elements Water Resources and Environment: Global Water Balance. Origin and composition of sea water. Introduction to trace elements, Classification of trace elements, trace elements and health, possible effects of trace elements, biochemical factors in environmental health	7
Unit II	15
A: Weather and Atmospheric Phenomenon Concept of weather, climate, metereology, Earth's thermal environment & seasons, Coriolis force, Indian mansoon, Droughts, El Nino phenomenon, La Nina phenomenon, its effects on rainfall pattern	8
B:Energy Budget and Temperature Inversion Energy budget of earth, Albedo, Heat island Lapse rate, Types-ELR, DALR & WALR Temperature inversion; Types-radiation, advection, frontal, subsidence, turbulence Types of interaction of solar rays with atmosphere	7

- 1. Valdiya K.S., Environmental Geology: Indian Context, Tata McGraw Hill
- 2. D.S. Lal(1989), Essentials of Climatology, Chitanya Publishing Houe, Allahabad
- 3. T.D. Biswas, & S. K. Mukharjee, Tata McGraw-Hill Education
- 4. Dilip Kumar das(2nd Edition) Dilip Kumar Das, kalyaniPublisgers
- 5. Environmetal Geology(9th edition) Kellar E.A., Prentice Hall
- 6. Environmental Science by S. C. Santra
- 7. Soil Geology by A. K. Koley
- 8. Concepts in Geology by A. K. Koley
- 9. Foundation of Earth science by F. K. Lutgens and E. J. Turback

Fundamentals of Environmental Pollution I (Water) – Paper IV (DSC-A4 – Fundamentals of Environmental Pollution I (Water)) Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Explain water pollution, its types and effects on living organisms and environment.
- 2. Analyse physico-chemical parameters in relation to water.

Unit	Lecture Hours
Unit I	15
A: Water Pollution, Classification and Impacts	
Definition, classification of water pollution-groundwater pollution,	
surface water pollution, marine pollution	8
Sources of water pollution-point and non point sources,	
Impacts of water pollution on human, plants & animals	
B: Water Quality Parameters	
Introduction to various water quality parameters and their	
measurement i.e. pH, EC, Turbidity, TDS, hardness, chloride,	7
Salinity, DO, BOD, COD and contaminants	1
Sampling methods: Purpose of sampling, different types of samples,	
collection methods.	
Unit II	15
A: Eutrophication and Heavy Metal Pollution	
Eutrophication, Types of Eutropropication, Causes of Eutropication,	
it's effects on water quality and aquatic animals, Preventive measures	7
of eutropication	1
Heavy metal pollution (Pb, Hg, Cd, Ar) & effect, bioaccumulation,	
bio magnification, pesticide, case studies – Itai-Itai, Minamate etc.)	
B: Treatments Provided to Water	
Drinking water standards, effluent standards,	
Characteristics of domestic waste, characteristics of agricultural	8
waste, Characteristics of industrial waste	σ
Water and waste water treatments i.e. Primary Treatment to waste	
water, Secondary Treatment, Tertiary / advanced treatment	

- 1. Environmental Pollution of Cadmium by Rohatgi
- 2. Chemical and Biological Methods for Water Pollution Studies by Trivedy and Goel
- 3. Water Pollution and Management by C.K. Vershney
- 4. Responses to Oil and Chemical Marine Pollution by Cormack D. (1993), Applied Science Publishers, New York
- 5. Soil and Water Conservation Engineering by Schwab, SD, Frevert, RK, Edminster, TW and Barns, KK, John Wiley and Sons.
- 6. Water Pollution Causes, Effects & Control by: P.K.Goel-1997
- 7. Elements of Environmental science and Engineering by Meenakshi P.
- 8. Manual of Environmental Analysis by Aery NC
- 9. Fundamentals of water Pollution by De Arnab Kumar

Fundamentals of Environmental Science–Paper V (DSC-A5 – Fundamentals of Environmental Science) Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Get acquainted with interaction between man and environment.
- 2. Awareness about various environmental issues such as global warming, ozone depletion, deforestation etc.

Unit	Lecture Hours
Unit I	15
A: Concept of Environmental Science	
Definition, Principles & Scope of environmental science.	
Interactions between earth, man & environment, concept of sustainable	7
development.	,
Laws of thermodynamics, heat transfer process, mass energy transfer	
across various interfaces, materials balance.	
B: Atmosphere, Hydrosphere, Lithosphere	
Structure & Composition of atmosphere, its layers-	
tropopshere, stratosphere, mesosphere, thermosphere	8
hydrosphere, lithosphere- crust, mantle and core,	
Biosphere meaning and its limits	
Unit II	15
C: Meteorological Parameters	
Meteorological Parameters i.e. pressure, temperature, precipitation,	7
humidityand its types, radiation & wind velocity and their units,	,
instruments used for measurement	
D: Biogeographic Provinces and Environmental Issues	
Biogeographic provinces of world	
Agroclimatic zones of India	8
Major Environmental Issues in India- green house gas emission, ozone	O
depletion, deforestation, depletion of fossil fuels and its impacts on	
mankind and animals	

- 1. Environmental Chemistry II Edition by A.K. De
- 2. Principles of Environmental Science by Watt, K.E.F. (1973), McGraw-Hill Book Company
- 3. Environmental Science by Nobel, B.J. and Kormandy, E.J. (1981), The Way the World Works, Prentice-Hall Inc., N.J.
- 4. Environmental Science by Turk A., Turk, J. Wittes J.T. and Wittes, R.E. (1978)
- 5. Ecology & Environment by P.D.Sharma
- 6. Environmental Science: An Introduction by G. T. Miller-1991
- 7. Environmental Science by S.C. Santra
- 8. Basic Concepts in Environmental Management by Mackenthun and Kenneth M.
- 9. Environmental studies by Joseph, Benny
- 10. Perspectives in Environmental studies by Kaushik, Anubha
- 11. Introduction to Environmental Management by Bal, Anand S.
- 12. Environmental studies by Uberoi N. K.

Semester I Soil Science-Paper VI

(DSC-A6- Soil Science) Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Understand the process of soil formation with respect to soil properties, soil chemistry.
- 2. Inculcation of various soil conservation practices and understanding other aspects such as bioremediation and biofertilizers.

Unit	Lecture Hours
Unit I	15
A: Soil Formation and Soil Profile	
Definition of soil, Classification, Types, Soil formation, Physical,	
chemical & biological weathering	7
Soil Profile – Horizon A, B, C & D	
Soil Types in India	
B: Soil Properties and Pollution	
Physical properties of soil – Texture, Structure & other chemical,	
Physical & biological properties	8
Soil Microbes, Types & their role in soil fertility	
Soil pollution, types, sources & effects on plants and animals	
Unit II	15
A: Soil Chemistry and Bioremediation	
Soil Chemistry – Acidic & alkaline soils, organic manures & green	
manures, bio fertilizers its types and advantages	7
Effects of fertilizers on soil properties	
Bioremediation, soil erosion, types of agents & effects	
B: Soil Conservation	
Soil conservation : methods, practices, land treatment	
Need & practices for agricultural lands, physical, mechanical &	8
biological practices	o
Points to be considered for choice of conservation practice	
Bunding, terracing, plantations and other practices, it's advantages	

- 1. Land Pollution, Causes and Control by Harrusson and Laxon
- 2. Soil and Water Conservation Engineering by Schwab, SD, Frevert, RK, Edminster, TW and Barns, KK, John Wiley and Sons.
- 3. Manual of Soil & water Conservation Practices by Carmel singh, C. Venkataramamnan, G. sastry, B.p. Joshi
- 4. Principle of Soil Science by Rai M. M.
- 5. Basic Concepts in Soil Science by Kolay A. K.
- 6. Watershed Management by Murty J. V. S.

Fundamentals of Environmental Chemistry–Paper VII (DSC-A7 – Fundamentals of Environmental Chemistry) Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Understand the basic concepts and scope of environmental chemistry.
- 2. Study the mechanism of various equipments utilized for environmental analysis..

Unit	Lecture Hours
Unit I	15
A: Concept and Scope of Environmental Chemistry Introduction — Concept and Scope of environmental chemistry. Segments of environmental and various interactive reaction occurring between these segments. Green Chemistry.	7
B: Pesticides and Problems Related to It Pesticides: Classification, degradation, analysis, pollution due to pesticides and DDT problems Stoichometry, Gibb's energy, Chemical potential, chemical equilibria, acid base reactions, solubility product, solubility of gases in water, the carbonate system, radionuclides.	8
Unit II	15
A: Heavy Metals and Their Impacts Thermo chemical and photochemical reactions in the atmosphere. Chemistry of water — Chemical & Physical properties, Hydrogen bonding, Interaction with gases & earth minerals Carcinogenic compounds and their effects. Aflatoxin occurrence, chemical composition and properties metabolism, acute toxicity, carcinogenicity.	8
B: Environmental Analysis and Instrumentation Environmental Analysis — Solution Concentration, (Normality, Molarity, ppm, equivalent weight etc.) Titrimetric methods. Instrumentation Principle & working pH meter, conductivity meter, spectrophotometer, flame photometer	7

- Vogel's Textbook of quantitative Chemical Analysis, 5th edition by J H Basett, J. Nendham and Denny, R.C.
- 2 Handbook of Analytical Instruments by Khandpur R.S.
- 3 Environmental Pollution Analysis by Khopkar S.M.
- 4 Instrumental methods of chemical analysis by BK Sharma
- 5 Instrumental methods of analysis by Willard, Meritt, Dean and Settle
- 6 S Watts and L. Halliwell; Essential Environmental Science and Techniques, Routledge (1996)
- 7 Elements of Environmental Chemistry by H. V. Jadhav
- 8 Environmental Chemistry by De Anil K.

- Instrumental Methods of Analysis by Chatwal and Anand Manual of Environmental Analysis by Aery N. C.

Fundamentals of Environmental Biology– Paper VIII (DSC-A8 – Fundamentals of Environmental Biology) Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Identify the scope and importance of environmental biology.
- 2. Awareness about ecological adaptations and marine biology.

Unit	Lecture Hours
Unit I	15
A:Introdution to Biology	
Introduction to biology, branches, scope & importance	
Origin of life, evolution – eras, periods, epochs, events	
Explosions & mass extinctions & Paleontological evidences for these	8
Biogeography – meaning, biogeographical profile of world, physical,	
microbial, floral & faunal characteristics of each biogeographic zone	
ecotone, edge effects	
B: Biodiversity of India	
Biological diversity of India: Major genera, species, subspecies	
Definition and nature, India's biogeographical history, physiography,	7
climate and its impact on biodiversity. Indian forest and vegetation	
types	
Unit II	15
A: Marine Biology and Species in Red List	
Endangered, Endemic and Extinct Species of India: Threatened	
species categories of IUCN, threatened species of plants and animals	8
in India and their reasons, Red data books	o
Marine Biology: biology of coastal and open sea environment, their	
distribution, adaptation and productivity	
B: Ecological adaptations and Bioresources	
Ecological adaptations under various environmental conditions.	
Bio-resources – Forest, Agricultural crops, livestock, fisheries.	7
Use of bio-resources, threats – over exploitation, habitat loss, invasive	
spp. etc.	

- 1. Environmental Biology by P.S. Verma and V.K. Agrawal
- 2. Environmental Biology by Reiss and Michael
- 3. Environmental Microbiology by Buckley R. G.
- 4. Principls of Ecology By R.J.Rutman and S.D. Wratten
- 5. Ecology by Mohan P. Arora
- 6. Environmental Microbiology by K. Vijaya Ramesh
- 7. Animal Ecology and Environmental Biology by H. R. Singh

Fundamentals of Environmental pollution II (Air & Noise) – Paper I (DSC-B1 – Fundamentals of Environmental pollution II (Air & Noise)) Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Study the sources and effects of air and noise pollution.
- 2. Explain the working of air pollution controlling devices and institutions working for the cause of environment.

Unit	Lecture Hours
Unit I	15
A: Properties of Atmosphere	
Physical and chemical properties off atmosphere,	
Solar radiation – Solar spectrum Insolation, Factors affecting	
insolation	8
Atmospheric stability: concept and types, pasquill stability	Ü
classification	
Mixing heights, plume behavior, Dispersion of pollutants in atmosphere	
B: Air Pollution and Sources	
Air Pollution, Definition, terminology,	
Sources of air pollution,	
Classification of air pollutants, National Ambient Air Quality	7
Monitoring Standards	
Aerosols: Sources, classification, size, adverse effects, cloud	
seeding	
Unit II	15
A: Pollution Controlling Devices and Institutions	
Air pollution control: stationary sources – settling chamber,	
cyclone, Wet collector,	
Fabric filter and Electro Static Precipitators	
Green house effect (Global Warming), Ozone layer depletion	8
Acid Rain, Effect of air pollution and acid rain on plants, animals	Ü
and property	
IPCC (Intergovernmental Panel on Climate Change), UNFCCC	
(United NationsFramework Convention on Climate Change), Kyoto	
Protocol	
B: Noise Pollution	
Noise pollution, definition, sources	
Effects of noise pollution on human beings and animals Noise control measures	7
Characteristics of sound waves- Sound Level, Frequency,	
Wavelength, Sound pressure	
wavelength, both pressure	

- 1. Air Pollution By: Arthur C Stern. 3rd Edn. Vol. I, II, VI, VII, Academic Press (1986)
- 2. Air Quality By: Thad Godish, 3rd Edition, Lewis Publishers, New York (1997)
- 3. Understanding Environmental Pollution By: Marquita K Hill. Cambridge University Press (1997)

- 4. Pollution: Causes, Effects & Control Edited By: Roy M Harrison. 2nd Edn. The Royal Society of Chemistry Cambridge (1995)
- 5. Environmental Chemistry: A Global Perspective By: Gary W vanLoon& Stephen J Duffy. Oxford University Press (2000)
- 6. Handbook of Air Pollution Control Engineering & Technology By: John C Mycock, John D McKenna & Louis Theodore. Lewis Publishers, CRC London (1995)
- 7. Handbook of Pollution Control Processes By: Robert Noyes. JaicoPublisheing House, Mumbai (2001)
- 8. An Introduction to Air Pollution By: RK Trivedy& PK Goel. ABD Publishers Jaipur, India (2003)
- 9. Air Pollution By MN Rao& HVN Rao. Tata McGraw-Hill Publishing company Ltd., New Delhi (1994)
- 10. The Atmosphere by Tarbuch and Lutgen
- 11. Introduction to Atmospheric Chemistry by Hoobs, Peter V

Biological Diversity and Conservation—Paper II (DSC-B2 – Biological Diversity and Conservation) Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Study the concept, need, types and scope of biodiversity.
- 2. Know various biodiversity conservation measures and organizations working for it

Unit	Lecture Hours
Unit I	15
A: Biodiversity Concept and Disciplines Biodiversity concept, definition, need for assessment, scope of biodiversity studiesvarious disciplines of Biodiversity- Evolutionary, taxonomic, Ecology, Genetics, Population, composition and levelsof biodiversity, Ecological, Organismal, genetic and cultural diversity, alpha-Beta-Gama diversity, process of diversification at genetic and species level Value of biodiversity – direct & indirect value – food, timber, medicinal & ornamental.	8
B: Loss of Biodiversity and It's Causes Centers of diversity, concept of endemism, types & endemic species with example. Loss of biodiversity, Founder Effects, Demographic bottlenecks, Genetic Drift, Inbreeding Depression, IUCN Threatened species Categories Loss of Ecosystem Diversity: Factors Affecting Ecosystem Degradation & Loss fragmentation, habitat loss, pollution & over exploitation, change in habitat, effects of climate change, Human wildlife conflict	7
Unit II	15
A: Conservation Measures Necessity of biodiversity conservation, Methods of biodiversity conservation: In situ (Biosphere reserves and national parks)& ex situ (Germplasm collection, botanical garden, seed banks, pollen banks, DNA banks) conservation, Conservation of genetic diversity, Species diversity and ecosystem diversity Concept of hotspot, India as mega – biodiversity country Conservation of biodiversity, need & awareness, Introduction, Biosphere Reserves and National Parks	8
B:Organizations and People's Movement Organizations involved in biodiversity conservation IUCN, UNEP, UNESCO, WWF, ICSU, FAO, WCMC, ISBI.Organizations Involved in Financing Biodiversity Introduction, International Biodiversity Law. Convention on Biological Diversity, Ramsar Convention, National Legislation: Environmental Protection Act 1986, Biodiversity Act, Biodiversity Rules and Regulations People's movement for biodiversity conservation, Biodiversity awareness programme	7

- 1. Chaudhuri AB and Sarkar DD (2003) Megadiversity Conservation, Flora, Fauna and Medicinal Plants of India's Hotspots. Daya Publishing House, New Delhi.
- 2. Singh, B. K. 2004: Biodiversity Conservation and Management, Mangaldeep Publications, Jaipur
- 3. Krishnamurthy, K.V. 2003. An Advanced Textbook on Biodiversity Principles and Practice, Oxford and IBH Publishing, New Delhi.
- 4. Kotwal, P.C. and S. Banerjee. Biodiversity Conservation In Managed forest and Protected areas, (2002). Agrobios, India
- 5. Animal Ecology and Environmental Biology by H. R. Singh
- 6. Plant Diversity Hotspots in India An Overview by Hajra P.K. and V. Mudgal
- 7. Plant Ecology by John E. Weaver and F.E. Clement
- 8. Restoration of Endangered Species by Bowles M.L. and Whelan C.J.
- 9. Understanding Biodiversity- Life, sustainability and Equity by Ashish Kothari

Climate Change and Sustainable Development – Paper III (DSC-B3– Climate Change and Sustainable Development) Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Study the causes and effects of global environmental issues in relation to global warming and ozone depletion.
- 2. Inculcate the concept of sustainable development and practices.

Unit	Lecture Hours
Unit I	15
A: Global Warming and Ozone Depetion Definition and causes of global warming, role of CO ₂ in climate change, global impacts, Concept of atmospheric window, impact of climate change on atmosphere, sea level rise, agricultural productivity, introduction to carbon dating, Ozone layer and it's importance, causes of ozone layer depletion, Ozone depleting substances, Effects of ozone layer depetion	8
B: Climate Change and Policies Intermational agreements regarding climate change, Montreal protocol, Kyoto protocol, Carbon credit and carbon trading, Mitigation strategies for climate change, Paris agreement, United Nations Framework on Climate Change, Vienna Convention	7
Unit II	15
A: Sustainable Development Definition, Concept and strategies of sustainable development, United Nation Conference on Environment and Development with special reference to agenda 21, CSR and sustainability, Clean development mechanism, Commission on sustainable development, The world summit on sustainable development, threats to sustainable development, principles of sustainable development	8
B: Sustainable Development Practices in India: Major issues in sustaining growth and development in India, Interlinking of rivers, desertification and it's control, Environmental priorities in India, Role of India in environmental treaties, urban and rural planning	7

- 1. Ecology & Environment by P.D.Sharma
- 2. Environmental Science by S. C. Santra
- 3. Atmosphere, Weather and Climate by Barry R. G.
- 4. Climate Change: Causes, Effects and Solutions by Hardy J. T.
- 5. Climate and Global Climate Change by Harvey D
- 6. Climate Change: The Science of Global Warming and Our Energy Future by Mathez E. A.
- 7. Climate Change and India by Mitra A. P., Sharma S., Bhattacharya S., Garg A., Devotta S. and Sen K.

Forest management—Paper IV (DSC-B4 – Forest Management)

Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Study the need of forest management and agroforestry, principles of forest management and legal aspects of forest management.
- 2. Understand the concept of silvicultural systems and management of forest resources.

Unit	Lecture Hours
Unit I	15
A: Forest Management and Silvicultural System Definition, Objectives, Importance of forest management in India Introduction to silviculture&silvivultural systems, types & advantages	
and disadvantages of different systems History of forest management in India Forest as ecosystem, productivity, forest types in India	7
B: Forest Management Systems and Forest Resources Forest Management Systems: Objective and principles; techniques; sustained yield relation; rotation of growing stock through management, Forest Working Plan, integrated approach, Forest Mensuration - Methods of measuring - diameter, girth, height and volume of trees; form-factor Forest Resources and Utilization: Direct and indirect, Environmentally sound forest harvesting practices, logging and extraction techniques and principles, transportation system, storage and sale, Need and importance of wood seasoning and preservation; Non-Timber Forest Products (NTFPs) definition and scope	8
Unit II	15
A: Agroforestry and Joint Forest Management Agroforestry, Social forestry, taungya system, shifting cultivation- Introduction, classification, scope Advantages & disadvantages of all these practices Joint Forest Management, introduction, objectives	7
B: Laws and Regulations Regarding Forest Conservation Forest conservation, need, services provided by forest, tangible, intangible Indian forest Act, 1927 Forest Conservation Act, 1980 National Forest Policy,1894, National Forest Policy ,1952, National Forest Policy, 1988	8

- 1. Sarma, P. K.: Forest Resources and their Utilization in India, Mittal Publishers, New Delhi
- 2. Agrawal, V. P.: Forestsin India, Oxford & IBH, New Delhi
- 3. Desai, V.: Forest Management in India: Issues and Problems, Himalaya Publishing House, New Delhi

- 4. Principle and practices of Silviculture by L. S. khanna
- 5. Forestry in India by A. P. Dwiwedi
- 6. Forest and Forestry by KP Sagaraya
- 7. Handbook of Forestry by S SNegi
- 8. Social Forestry by K M Tiwari
- 9. Forest Ecology by A S Puri
- 10. Forest Mensuration by L. S. Khanna
- 11. India's Forest Policies: Analysis and Appraisal by L K Jha

Solid and Hazardous Waste Management—Paper V DSC-B5 — Solid and Hazardous Waste Management Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Study the fundamentals of solid and hazardous waste management.
- 2. Learning the rules and regulations of solid and hazardous waste.

Unit	Lecture Hours
Unit I	15
A: Introduction to Solid Waste	
Solid waste: Introduction and definition, classification of solid	
waste, sources of solid waste generation, components in soild	7
waste, Collection and volume reduction prior to disposal,	
Physio-chemical properties of solid waste	
B: Solid Waste Management Systems	
Solid Waste Management, advantages	
Factors affecting solid waste management system	
Indian Scenario of Solid Waste Management	
Case studies for solid waste management	8
Traditional methods, ecofriendly methods-conversion of solid	
waste to energy/manure, other techniques for soild waste	
management	
Constraints in solid waste management	
Unit II	15
A: Introduction to Hazardous Waste	
Hazardous waste definition, characteristics, types-biomedical,	
radioactive and other wastes, source of hazardous waste,	7
handling and storage of hazardous waste,	
Health risks associated with hazardous waste,	
B: Waste Management Rules and Methods	
Hazardous Waste (management and handling) rules, Biomedical	
(handling and management) rules, 2008Waste minimization,	8
Waste treatment methods: Incineration, Stabilization, Secure	U
Landfiil, Disinfection, Irradiation, Pyrolysis	
Disposal of radioactive waste	

- 1. Integrated Solid Waste Management Engineering Principles & Management By: Issues by George Tchobanoglous, Hilary Theisen& Samuel A Vigil. McGraw-Hill International Editions, New York (1993)
- 2. Solid Waste Management in Developing Countries By: AD Bhide& BB Sunderesan. Indian National Scientific Documentation Centre, New Delhi (1983)
- 3. Solid Waste Engineering By: PA Vesilind, William Worrell & R. Thomas Brooks/Cole, Australia (2002)
- 4. Basics of Solid and Hazardous Waste Management Technology By: K.L Shah. Prentice Hall, Ohio (2000)
- 5. Industrial and Hazardous Wastes Health Impacts & Management Plans By: Rajiv K Sinha& Sunil Heart. Pointer Publishers, Jaipur (2004)
- 6. Prospects and Perspectives of Solid Waste Management

- Hazardous Waste management by M. LaGrega and others, McGraw-Hill Publication Biomedical (handling and management) rules, 2008 7. 8.

Occupational Health & Safety-Paper VI DSC-B6 - Occupational Health & Safety

Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Get acquinted with importance of industrial safety to workers and use of PPE'S.
- 2. Making students to understand the methods of strategic planning for hazard prevention.

Unit	Lecture Hours
Unit I	15
A:Introduction to safety and PPEs	
Definition, goals, needs, Principles & Practices of industrial safety	
Role of Management in Industrial Safety	
Adverse health effects of noise, vibration, cold, heat stress,	8
improper illumination, thermal radiation, ionising& non-	
ionising radiations	
Importance and types of PPEs	
B:Strategic Planning and Hazard Prevention Hierarchy	
Definition, purpose, nature, scope and procedure	
Strategic planning and tools of implementation,	7
Management by objectives (MBO) and its role in Safety, Health and	,
Safety Management,	
Hazard prevention hierarchy	
Unit II	15
A: Leadership and Motivation	
Direction: Definition, process, principles and techniques	
Leadership: Role, functions and attributes of a leader	7
Theories of motivation and their application to safety, role of	
supervisors and safety departments in motivation	
B: Introduction to Communication	
Communication: Purpose, process, types and channels, Essential	
rules in communication, Two ways communication, Barriers in	8
communication, Essentials of effective communication,	
Communication and group-dynamics, Team building	

- 1. Industrial Safety and Environment. V. K. Gupta, 2006
- 2. Industrial Safety and Health Management. C. Asfahl, 1984
- 3. Leading with safety. Thomas R Krause, 2005
- 4. Safe by Accident?: Take the Luck Out of Safety: Leadership Practices that Build a Sustainable
- 5. Industrial Safety and Risk Management. Doug McCutcheon and Laird Wilson, 2003Culture. Judy L. Agnew, Aubrey C. Daniels, 2010
- 6. Practical Industrial Safety, Risk Assessment and Shutdown Systems for Industry. Dave Macdonald, 2004
- 7. Industrial Safety Management: Hazard Identification and Risk Control by Deshmukh L. M.

Semester II Remote Sensing & GIS-Paper VII DSC-B7 - Remote Sensing & GIS Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Introduction to remote sensing, GIS and satellites.
- 2. Study applications of Remote Sensing, GIS and satellites.

Unit	Lecture Hours
Unit I	15
A: Terms Related to Remote sensing Definition and Scope of Remote Sensing, Electromagnetic spectrum- Electromagnetic spectrum, Aerial photography- Classification Of Aerial Photographs, Types of aerial photographs, Geometry of Aerial photograph, Scale and Relief Displacement, overlap, drift crab, Principal Point and Conjugate Principal, Point of Aerial Photographs, Stereoscopy- Stereoscope, stereoscopic photograph, Parallax, elements of aerial photo interpretation and Applications of Aerial Photographs	7
B: Introduction to Satellites Satellite imageries-Scanners, pixels, grey levels, bands. Introduction, Remote Sensing Satellites- Meteorological Remote Sensing Satellite (Polar and Geostationary Satellites), Non Meteorological RS Satellites (Landsat, Spot, IRS), Resolution (Spectral and Spatial and Frequency of Coverage), Satellite data products and selection of satellite data; Data Reception Archiving and distribution	8
Unit II	15
A: Introduction to GIS Definition of GIS, Capabilities and advantages of GIS, Sources of data, types of data, hardware requirement, components of GIS.,Data structure, Raster and Vector data models, advantages and disadvantages of vector data and raster data, GIS packages, Application of GIS in Environmental Management	8
B: Terms in GIS Topology: Error and editing, GIS data quality, errors, policies. Vectordataanalysis:Buffering,Overlayanalysis(pointinpolygon,lineinpolygon, polygoninpolygonetc.);Networkanalysis;Terrainanalysis:DEM,DTM andTIN; Interpolationtechniques in GIS; Rasterdataanalysis; Non-spatial data: Database Managementsystem(DBMS)	7

- 1. Principles of Photo geology by Singh
- 2. Principles of Remote Sensing by Currain
- 3. Fundamentals of Photo geology by SN Pandey
- 4. Remote Sensing and Image Interpretation:-Tomas M.Lillesand and Ralph W.Keifer john Wiley and sons Inc.NewYark.
- 5. Introduction to Remote sensing:-James B. Campbell, Tylor and FraneisLtd.Londan.
- 6. Remote Sensing application in applied geosciences:-Sumitra Mukherjee, Milton Book Company.

- 7. Principles of Remote Sensing:-A.N.Gatel and S.Singh, Scientific Publishers (India). Jodhpur (1999Edition).
- 8. Remote Sensing for Environment and Forest Management:-A.Mehrotra and R.K.Suri. Indus Publishing Co.New.Dehli(1994 Edition)
- 9. Remote sensing for large wildfires:-E.Chuvieco, Springer, New York (1999 Edition).
- 10. Textbook of Remote Sensing and GIS by Anil Reddy
- 11. Fundamentals of Remote Sensing by George Joseph
- 12. Principles of Geographical Information system by Burrough, Peter A.
- 13. Remote Sensing and GIS by Bhatta B.

Computer Applications – Paper VIII DSC-B8 – Computer Applications VIII

DSC-B8 – Computer Applications VIII Credits 2 (Marks 50) Hours 30, 37.5 Lectures of 48 minutes

Course Outcome:

- 1. Understand the basic concepts of hardware and software.
- 2. Learn various computer applications through report writing in MS word and presentation of data through Excel and power point.

Unit	Lecture hours
Unit I	15
A: Introduction to Computer Computer characteristics and Functionalities, Applications, Generations	7
Types, Block Diagram, Concept of Hardware and Software	
B: Input and Output Devices Input devices- Keyboard, mouse, joystick, scanner, MICR, OMR, OCR. Output Devices- Monitor, Printers (Impact and non impact), plotter- Flat-bed and drum, Selection of printer and paper for output depending upon user requirements. Memory- concept, primary memory – RAM- SRAM, DRAM, ROM- PROM, EPROM, EEPROM, cache memory, Secondary memory- floppy disk, hard disk, Optical storage devices, Pen drive.	8
Unit II	15
A:MS Excel Basics of Excel – Ribbon, Workbook, worksheet, Format options, templates, data validation, sorting and filtering of data, Functions-Count and Sum, Logical, Date and Time, Text, Lookup and References, financial and statistical functions, using formula, Charts-column, pie, bar, line, scatter plot, data series.	7
B: MS Word and MS Powerpoint MS Word: Introduction and feature, Creating word document, Editing features, Text formatting options, page formatting –adding header and footer, page number, insert page break, blank page, cover page, page orientation, print options. Working with tables, creating Table of Contents, Mail merge, shortcut keys, cursor control keys. MS PowerPoint: Features, factors to be considered for effective presentation, Creating Basic presentation, Editing and formatting options, inserting picture, chart, table, audio and video to slide, using animation and slide transition	8

- 1. Schuurman, Nadine. 2000. "Troubleinthe Heartland: GIS and its Critics in the 1990s." Progress in Human Geography, vol. 24, no. 4, pp. 569-590.
- 2. Schuurman, NadineandG.Pratt.2002."CareoftheSubject: Feminism andCritiquesof GIS."Gender,Placeand Culture,vol.9,no.3, pp.291-299.
- 3. Schuurman, Nadine. 2004. GIS-AShort Introduction. Blackwell Publishing.
- 4. Computer Fundamentals- P. K. Sinha
- 5. Operating System Godbole
- 6. Computer Today- S. Basndara
- 7. Computer Fundamentals- V. Rajaraman

DSC-P1 and P2-LAB COURSE (Semester I)

Sr. No.	Name of Experiment
1	Study of Phytoplanktons and Zooplanktons.
2	Determination of frequency of species in ecosystem
3	Determination of species density in nearby ecosystem
4	Determination of Species Diversity Index
5	Classification and identification of minerals
6	Classification and identification of rocks
7	Study of floral resources in surrounding area
8	Determination of pH of given sample
9	Determination of Electrical Conductivity of water sample
10	Determination of Dissolved Oxygen in water sample
11	Determination of Free Carbon Dioxide in water sample
12	Determination of Biochemical Oxygen Demand of water sample
13	Determination of Chemical Oxygen Demand of water sample
14	Determination of Total Dissolved Solids and Total Suspended Solids
15	Estimation of Total Hardness of geiven water sample
16	Determination of Calcium and Magnesium hardness of given water sample
17	Determination of Alkalinity in water sample
18	Determination of Acidity in water sample
19	Determination of Bulk Density of soil sample
20	Determination of porosity of soil sample
21	Determination of water holding capacity and moisture content of soil sample
22	Determination of chlorophyll content of given plant material
23	Study various soil and water conservation practices through field visits

DSC- P3 and P4 LAB COURSE (Semester II)

Sr. No.	Name of Experiment
1	Measurement of noise levels at silence, residential and commercial zone
2	Study of Personal Protective Equipments
3	Study of occupational health hazards in nearby industry
4	Field Visit to Sewage Treatment Plant to understand its functioning
5	Determination of moisture content of solid waste
6	Study of composting technique through field visit
7	Study electricity generation from solid waste through field visits
8	Study working of High Volume Sampler
9	Determination of of PM ₁₀ in ambient air
10	Analysis of Sulphur Dioxide in ambient air
11	Analysis of Nitrogen Oxides in ambient air
12	Study and list out minor forest products used by community living near forest area
13	Interaction with community for awareness regarding environmental degradation
14	Study of instruments used for measurement of metereological parameters
15	Preparation of wind rose diagram
16	Study of well inventory
17	Measurement of height of tree
18	Measurement of clown density of tree
19	Measurement of girth and diameter of tree
20	Use of MS word for report preparation
21	Use of MS excel for result preparation
22	Use of MS power point for preparing presentations
23	Interpretation of aerial photographs
24	Determination of scale of aerial photographs